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The rate of earthquakes induced by fluid injection from oil 
and gas operations in parts of North America has surged in 
recent years (1, 2). In many areas, this increase is primarily 
associated with high-rate injection of large volumes of 
saltwater into porous rock formations (3–5). However, the 
U.S., U.K., and Canada each have well documented 
earthquakes induced by hydraulic fracturing of low-
permeability shale formations, with reported moment 
magnitudes (MW) ranging from 2.0 to 4.6 (6–9). Seismicity 
triggered by hydraulic fracturing appears to be strongly 
localized. In western Canada, for example, induced 
seismicity of MW ≥ 3 is associated with only ~0.3% of 
hydraulically fractured wells (2). 

While we understand the basic principles of injection-
induced seismicity (10, 11), critical details remain incom-
plete concerning activation of rupture on a fluid-pressurized 
fault. For massive saltwater injection into a permeable layer, 
we believe the primary triggering mechanism is an increase 
in pore pressure within an expanding subsurface volume, 
which tends to destabilize pre-existing faults by shifting 
stress conditions into the shear-failure regime (1, 10). The 
fault-activation process is less clear in the case of hydraulic 
fracturing, where injection usually occurs within a highly 
impermeable layer, inhibiting diffusive transport of injected 
fluids and/or pore pressure (2). Moreover, earthquake nu-
cleation requires unstable slip conditions on a fault, as re-
sistance to sliding must diminish faster than elastic 
unloading during fault slip. Yet current rate-and-state con-
stitutive laws for rock friction favor aseismic slip in re-
sponse to increasing pore-fluid pressure (12, 13). Resolving 
these apparent inconsistencies and developing valid predic-
tive models for earthquakes induced by hydraulic fracturing 
remain important challenges. 

Intermittent sequences of induced earthquakes began in 

December 2013 within a region of previous seismic quies-
cence west of Fox Creek, Alberta (Fig. 1). These earthquake 
sequences exhibit clear spatial and temporal correlation 
with hydraulic fracturing of the upper Devonian Duvernay 
Formation (9), a prolific hydrocarbon source rock that con-
sists of organic-rich mudstone, interfingered with imperme-
able limestone (14). In response to increased levels of 
seismicity, real-time seismographic monitoring in this area 
has been enhanced by the installation of a network of 
broadband stations (15). In the present study, this network 
is supplemented by data from 4 broadband seismograph 
stations installed by an oil and gas operator within the most 
seismically active part of this region (Fig. 2). The application 
of algorithms for template-based matched filtering (16) and 
double-difference relocation (17) has yielded improved mag-
nitude detection threshold and better focal-depth resolution 
than has heretofore been achieved using regional observa-
tions. 

In order to undertake a comprehensive comparison be-
tween seismicity and injection parameters, we compiled 
injection data for all wells that were completed in the Du-
vernay zone from December 2014 to March 2015 (18). At six 
drilling locations (well pads), hydraulic fracturing was per-
formed in multiple stages within horizontal wellbores. Vir-
tually all of the induced seismicity occurred in spatial 
clusters concentrated within a lateral distance of ~2 km 
from hydraulically fractured wells (Fig. 2), with sparse de-
tectable earthquake activity in the intervening areas be-
tween clusters. Although no template events were available 
with which to detect small earthquakes between clusters, 
even without such template events we can confidently ex-
clude inter-cluster seismicity of magnitude greater than MW 
2.0 based on the detection characteristics of the local array. 
As argued by previous authors on the basis of temporal and 
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spatial correlation (2, 9), it is highly unlikely that seismicity 
in this area has been primarily induced by saltwater injec-
tion. For example, to the end of the time interval for this 
study there was only one saltwater disposal well operating 
in this area (Fig. 2), injecting into a layer that is higher in 
the stratigraphic succession (Mississippian Debolt For-
mation). After three years of operation to the end of March 
2015, the cumulative injected volume at the disposal well 
was only 9.94 × 104 m3, a small volume compared to other 
regions where induced seismicity from saltwater disposal 
has been documented (19). 

For the most part, observed induced seismicity exhibits a 
clear temporal correlation with hydraulic-fracturing activi-
ties. As evident from graphs of daily average injection pres-
sure and cumulative injected volume (Fig. 3), most of the 
induced seismicity occurred during hydraulic-fracturing 
operations at proximal well pads. Cluster 1 is an exception 
to this behavior and was seismically active from early Janu-
ary to late March. Persistent but intermittent seismicity 
within this cluster lacks any clear indication of Omori-type 
decay in seismicity rate, which is generally characteristic of 
earthquake aftershock sequences; instead, it is characterized 
by three distinct post-treatment event sequences (S1–S3), 
each defined by a pattern of increasing/ decreasing event 
magnitudes followed by a brief hiatus. The largest induced 
earthquake (MW 3.9) took place on 23 January 2015 during 
sequence S1, two weeks after completion of hydraulic frac-
turing at pad 1. This event occurred during flowback, a post-
injection process during which fracturing fluid is partially 
recovered in a controlled manner (20). This timing invites 
speculation that the earthquake was triggered by fluid 
withdrawal; however, only ~7% of the injected fluids at well 
1 flowed back to the wellhead, an unusually low recovery 
level compared to typical values of ~50% in other parts of 
western Canada (21). This limited recovery of flowback flu-
ids is indicative of fluid retention within a subsurface region 
that is in hydrological contact with the primary or second-
ary network of induced hydraulic fractures (22). 

The combined availability of a relatively complete earth-
quake catalog and comprehensive injection data enable accu-
rate determination of several important parameters. For 
example, an often-cited relationship postulates that maxi-
mum seismic moment for injection-induced earthquakes is 
limited to the product of the net volume of injected fluid and 
the effective modulus of rigidity that describes the fault zone 
(19). This model assumes that the stimulated rockmass is ful-
ly saturated, proximal faults are critically stressed, brittle 
failure occurs within a volume that is weakened by anthropo-
genic pore pressure increase, and induced earthquakes follow 
a Gutenberg-Richter magnitude distribution with a b-value 
near unity. Based on the cumulative injected volume for each 
well pad, we used this relationship to calculate a time-

dependent upper limit for moment magnitude. The calculat-
ed envelope is in general agreement with our observations 
(Fig. 3). Similarly, the seismogenic index (Σ), defined as log10 
N≥M (t) − log10 VI (t) + b M,  provides a measure of site-specific 
seismotectonic characteristics that expresses the (time inde-
pendent) potential for induced seismicity per unit injected 
fluid volume (23). For a given location, calculation of Σ re-
quires observations of the earthquake magnitude–frequency 
distribution, the b parameter of the Gutenberg-Richter scal-
ing law, and the net injected fluid volume, VI. The calculated 
seismogenic index for our study area ranges between −2.7 
and −1.5. These values of Σ exceed values obtained elsewhere 
for hydraulic fracturing (−9.4 to −4.4), but fall within a previ-
ously documented range (23) for geothermal reservoirs (−3.2 
to 0.4), suggesting that seismic hazard in the Fox Creek area 
may be more typical of that for geothermal projects than for 
other shale plays. 

An east-west cross section through cluster 1, where the 
station geometry is most optimal for determination of pre-
cise focal hypocenter locations, reveals two distinct, steeply 
dipping bands of seismicity extending from the injection 
zone within the Duvernay Formation into the upper part of 
crystalline basement (Fig. 4). These bands of seismicity are 
interpreted as en echelon fault strands within a roughly 
north-south trending strike-slip fault system, a scenario 
consistent with nodal planes evident from regional focal 
mechanisms (Fig. 1). Independent support for the existence 
of such a fault system is provided by statistical analysis of 
seismicity patterns (24), coupled with geochemical models 
for widespread dolomitization of the underlying Swan Hills 
carbonate platform (25) that invoke basement faults as mi-
gration pathways for large volumes of dolomitizing fluids. 
The bulk of seismicity within the east fault strand is located 
>1 km from the nearest injection well and, similar to the 
other 5 clusters, this strand was mainly active during hy-
draulic-fracturing operations. 

In contrast, the more proximal west fault strand was re-
peatedly activated for several months after completion of 
the treatment program. The hypocenter distribution sug-
gests that the fault zone intersects the Duvernay Formation 
between the two injection wells. Hydraulic fracturing was 
performed in these wells using a so-called zipper frac tech-
nique, which involves staggered injection stages between 
two wells (26). Considering that ~93% of injected hydraulic 
fracturing fluids at well pad 1 were not recovered during 
flowback, it is likely that sustained pressurization of the 
fault zone occurred. Induced seismicity sequences appear to 
have occurred in a retrograde fashion, with the hypocenter 
of the largest event (sequence S1) located at the deepest lev-
el within the upper part of Precambrian crystalline base-
ment, followed by migration of subsequent sequences (S2 
and S3) to shallower levels, closer to the injection zone. 
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A recent analytical study that considered poroelastic 
coupling of stress and pore pressure in a homogeneous me-
dium shows that, at large distances from a fluid injection 
site, stresses ultimately dominate over pore-pressure in-
crease (27). Similarly, a numerical analysis, also based on 
poroelasticity theory, suggests that a 2013–2014 episode of 
seismicity induced by hydraulic fracturing in the Fox Creek 
area is best explained by the elastic response of the solid 
matrix, rather than fluid diffusion (28). In our study, the 
east and west strands of cluster 1 appear to delineate faults 
with similar orientations but contrasting activation signa-
tures. As shown in fig. S10 of the supplementary materials, 
when the elastic response of the surrounding medium to 
hydraulic fracturing at well pad 1 is considered, seismicity 
within the east strand largely falls within a positive Cou-
lomb stress-change regime (up to ~ 0.1 MPa), consistent 
with previous findings (28). On the other hand, hypocenters 
for the west strand fall largely within a regime wherein elas-
tic stresses induced by hydraulic fracturing are predicted to 
inhibit fault slip, implying that a different triggering mech-
anism is required. 

According to a model for nucleation and arrest of dy-
namic rupture on a pressured fault (29), the existence of a 
permeable and aerially extensive fault that is imperfectly 
aligned with the optimal orientation within the regional 
stress field enables pressurization to occur over a large fault 
patch prior to nucleation of rupture. As shown in fig. S11 of 
the supplementary materials, post-injection activation of the 
MW 3.9 earthquake is consistent with pore-pressure diffu-
sion along the west fault strand. Taken together, our obser-
vations suggest that: (i) a ~two-week delay in occurrence of 
the largest event after completion of hydraulic fracturing 
corresponds with relatively aseismic pressure diffusion on 
the west fault strand; (ii) earthquake nucleation occurred 
within the uppermost crystalline basement and was trig-
gered by an estimated pore-pressure change of ~ 0.12 MPa; 
(iii) the slip regime within the weakened, fluid-pressurized 
fault segment above the initial rupture during sequence S1 
was subject to re-nucleation during sequences S2 and S3, 
months after elastic stresses from the hydraulic fracturing 
operations had subsided based on lack of seismicity within 
the east fault strand. 

The occurrence of the MW 3.9 earthquake on 23 January 
2015 prompted, shortly thereafter, the introduction of new 
regulations applicable to this region that include a “traffic 
light protocol” that mandates immediate shutdown in hy-
draulic fracturing operations following an earthquake of ML 
(local magnitude) 4.0 or greater within 5 km of an affected 
well (30). Similar magnitude-based traffic-light protocols 
have been established in other jurisdictions (31). As seen in 
many studies of injection-induced seismicity from massive 
saltwater disposal, in this study a reactivated fault zone is 

imaged by well-located hypocenters. Our results indicate 
that fault activation during and after hydraulic fracturing 
can be triggered by different mechanisms, including stress 
changes due to the elastic response of the rockmass to hy-
draulic fracturing or pore-pressure changes due to fluid dif-
fusion along a permeable fault zone. While stress-related 
triggering appears to diminish shortly after operations, a 
fluid-pressurized fault may be susceptible to persistent 
seismicity for a period of at least several months. This sug-
gests that increased sensitivity of a fluid-pressurized fault 
should be considered in ongoing development of mitigation 
strategies for seismicity induced by hydraulic fracturing. 
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Fig. 1. Seismicity of northwestern Alberta, Canada for the period 
1985−2016. Symbol size indicates magnitude and color denotes date of 
occurrence. Seismicity west of Fox Creek commenced in December 2013, 
and correlates in space and time with local hydraulic-fracturing operations 
(9). Focal mechanisms of the largest earthquakes, from (32–34), are 
labeled by year/month/date of occurrence. White rectangle outlines the 
area in Fig. 2. 
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Fig. 2. Details of seismicity induced by hydraulic fracturing at 6 well 
pads from December 2014 to March 2015. Black triangles show local 
broadband seismograph stations; small black triangle shows a station that 
was deployed for a short time after the MW 3.9 event. Event symbols are 
colored by date of occurrence and are scaled based on magnitude. Well 
pads are numbered sequentially by initiation of hydraulic-fracturing 
operations. 
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Fig. 3. Comparison of seismicity and injection schedules for selected 
clusters. For each cluster (numbered as in Fig. 2), the upper panel 
shows seismicity (red dots) and calculated maximum magnitude (blue 
curve) (19), while the lower panel shows average daily treatment 
pressure (blue bars) and cumulative injected volume (red curve). 
Cluster 1 seismicity is repeated as gray dots in other graphs, for timing 
comparison. Black bar graph at top shows number of events per day for 
cluster 1, which lacks a typical Omori decay. At well 1, flowback (dashed 
curve) indicates recovery of only 7% of injected fluid. S1−S3 indicates 
time windows for interpreted sequences. A complete set of graphs for all 
clusters is shown in supplementary materials (fig. S9).
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Fig. 4. Cross section through cluster 1, showing east and west fault 
strands inferred from double-difference event locations. Dark blue 
symbols show events that occurred during hydraulic fracturing in two 
horizontal (hz) wells. Light blue, yellow and red symbols show 
subsequent events during sequences S1, S2 and S3, respectively. 
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